





Abstraet

It has been hypothesized recently that cooling caused by anthropogenic sulfate
aerosols may be obscuring a warming signal associated with changes in gresnhouse
gas concentrations. Here we use results from model experiments in which sulfate and
carbon dioxide have been varied individually and in combination in order to determine
whether the simulated surface temperature change patterns are increasingly evident in
observed records of temperature change.

We use centered [R(t)] and uncentered [C(t)] pattern correlation statistics in or-
der to compare observed time-evolving surface temperature change patterns with the
model-predicted equilibrium signal patterns. We show that in the case of temperature
signals from the "COs-only™ and “salfate-only” experiments, the C[t) statistic essen-
tially reduces to a measure of observed global-mean temperature changes, and cannot
be used to uniquely attribute observed climate changes to a specific causal mechanism.
For the signal from the experiment with combined C0; /[ sulfate aercsol forcing, C|t)
provides information on pattern congruence, but trends in C'(t) are difficult to inter-
pret without decomposing the statistic into pattern similarity and global-mean change
components. We therefore focus on R(f), which is a more useful statistic for dizcrimi-
nating between forcing mechanisms with different pattern signatures but similar rates
of global mean change.

Our results indicate that in summertime (JJA) and fall (SON), the pattern of near-
surface temperature change in response to combined sulfate asrosol /{COy forcing shows
increasing similarity with observed changes over the last 50 years, The results from
the individual CO3-only and sulfate-only experiments suggest that at least some of this
increasing spatial congruence is attributable to areas where the real world has cooled.

In the sulfate-only experiment, we find that the location of the maximum response
differs from the location of the maximum forcing. This illustrates the importance of
the atmospheric general circulation in modulating the response to regionally-localized
foreing, and points towards possible problems with sulfate asrosol detection studies that
do not involve an atmospheric model, and that compare instead observed temperature
changes with observed patterns of sulfur emissions or the sulfate aerosol distributlon
predicted by a sulfur chemistry model,

In the absence of reliable information on the magnitude and spatial characteristics of
long time scale natural variability in the real waorld, we use data from multi-centennial
control integrations performed with two different coupled atmosphere-ocean models to
estimate the sampling distributions of trends in R{t) and C{¢) on time scales of 10- to
50 years. For the combined sulfate asrosol {C0; experiment, the 50-year R{#) trends for
the JJA and SON signals are significant relative to the trends obtained in the absence
of external forcing. Hesults are robust in that they do not depend on the choice of
control run used to estimate natural veriability noise properties. The R(t) trends for
the COz-only signal are not significant in any season.

The caveats regarding the signals and natural variability noise which form the basis
of this study are numerous. Nevertheless, we have provided first evidence that both the
largest-scale (global-mean ) and smaller-scale { spatial anomalies about the global mean)
components of & combined CO; [ anthropogenic sulfate acrosol signal are identifiable
in the observed near-surface air temperature data. If the coupled-model noise estimates



used here are realistic, we can be highly confident that the anthropogenic signal which
we have identified is distinctly different from natural variability noise. The fact that we
have been able to detect the detailed spatial signature in response to combined CO,
and sulfate aerosol forcing, but not in response to CO forcing alone, suggests that
some of the regional-scale background noise (against which we were trying to detect a
CO,-only signal) is in fact part of the signal of a sulfate aerosol effect on climate. The
large effect of sulfate aerosols found in this study demonstrates the importance of their
inclusion in experiments designed to simulate past and future climate change.
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1 Imtroduction

Most previous greenhouse-gas (GHG) detection studies employing the so-called “fingerprint”®
strategy introduced by Madden and Ramanathan {1980; see also MacCracken and Moses,
1982) have used some form of pattern correlation statistic to compare the pattern of a model-
predicted GHG signal with the time history of observed patterns of near-surface temperature
changes (e.g. Barnett, 1986; Barnett and Schlesinger, 1987; Santer et al.. 1993). The signal
pattern in such studies is usually taken from an equilibrium COy-doubling experiment, or
towards the end of an experiment with a time-dependent GHG increase at a point where the
responge pattern is relatively stationary.

The strategy in this method is to search for a long-term, positive trend in the pattern
correlation statistic, which would indicate an increasing expression of the GHG signal in
the observations. Previous fingerprint studies have employed either uncentered statisties,
in which the searched-for signal consists of both a pattern and the global-mean change
{e.5. Barnett and Schlesinger, 1937; Hegerl et al., 1994), and/or uncentered statistics, in
which the global-mean change is removed and the signal is simply a spatial anomaly pattern
(Santer et al., 1993). A recent investigation making use of an uncentered statistic reached the
conclusion that a model-predicted GHG signal was identifiable with a high level of confidence
in the observed data (Hegerl et al., 1994). This and previous studies have shown that the
global-mean change is an important component of a GHG signal. A large body of earlier
work has also shown that observed changes in global-mean annually-averaged near-surface
air temperature are significant relative to various statistical- and model-based estimates
of natural variability noise (e.g., Wigley et al., 1989; Wigley and Raper, 1990, 1991a.b:
Bloomfield and Nychka, 1992: Karl et al., 1991: Stouffer et al., 1994),

Such studies have not directly addressed the issue of establishing an unambiguous link
between changes in some external forcing factor and changes in observed climate. This is the
attribution issue. It is possible that different external forcing mechanisms (or combinations
of external forcings and natural variability) can give rise to similar changes in the glohal-
mean state. Since changes in the value of an uncentered statistic largely reflect a change
in the global mean, such analyses provide little help in discriminating between different
mechanisms that could have produced such a change.! The studies cited above suggest that

*Unless the change in the global mean is so large that it cannot be explained by non-anthropogenic forcing



we might attach high confidence to the statement that the observed changes in global-mean
temperature over the past century are significant relative to current ‘best estimates’ of the
magnitude of natural variability noise. However, the same investigations do not allow one
to attach high confidence to the statement that the observed changes are solely attributable

to an enhanced greenhouse effect.

Our level of confidence in attributing observed changes to anthropogenic influences would
be increased if we could demonstrate that even small-scale spatial features of a model-
predicted anthropogenic signal showed a correspondence with observed changes. This is
where centered statistics are useful, since they focus on anomalies about the global mean.
The only previous study which employed a centered statistic to search observed records of
near-surface air temperature for model-predicted GHG signals failed to show any meaning-
ful multi-decadal positive trends in the measure of pattern correspondence (Santer et al.,
1993). This negative result has a number of possible explanations, such as errors in the
predicted GHG signal pattern, or masking of regional-scale features of the signal by low-
frequency natural variability and/or other forcing factors (anthropogenic sulfate aerosols,

volcanic aerosols, solar variability, etc.).

Until recently, it has not been possible to investigate the plausibility of these alternative
explanations in a quantitative way. Model experiments recently performed by Taylor and
Penner (1994; henceforth TP), however, may help to clarify whether the detection and
attribution of an anthropogenic effect on climate can be facilitated by incorporating the
climatic effects of anthropogenic sulfate aerosols. Sulfate aerosols arise from the SO, emitted
by fossil fuel combustion, industrial activities, and biomass burning. Such aerosols are likely
to have caused some degree of regional-scale cooling (Wigley, 1989), both directly through
clear-sky radiative forcing (reflection of incident solar radiation) and indirectly due to changes
in cloud brightness (Wigley, 1989, 1991; Charlson et al., 1991, 1992; Kiehl and Brlegleb 1993;
Taylor and Penner, 1994; Charlson and Wigley, 1994).

The TP integrations used an atmospheric general circulation model (AGCM) coupled
to a tropospheric chemistry model to investigate the climate response to forcing by an-
thropogenic sulfate aerosols and CO,. Four integrations were performed: a control run
with no anthropogenic sulfate aerosols and nominal pre-industrial CO, concentrations, a
‘sulfate-only’ experiment with present-day sulfur emissions, a ‘CO;-only’ experiment with

mechanisms and/or natural variability.
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near-current atmospheric CO; concentrations, and a ‘combined forcing' experiment with
present-day sulfur emissions and COQ; levels. The experiments indicated that the sulfate-
induced cooling pattern was very different from the (negative of the) pattern of greenhouse
warming. More importantly, the response pattern in the combined forcing experiment was
generally dissimilar to the response patterns in the sulfate-only and CO;-only experiments,
These results strongly indicate that the combination of sulfate and CO; forcing yields a signal
pattern substantially different from the greenhouse warming pattern typically produced by
AGCMs coupled to mixed-layer oceans (e.g. Manabe and Stouffer, 1980; Hansen et al,, 1934;
Schlesinger and Mitchell, 1987; Washington and Meehl, 1989} or fully-coupled A/OGCMs
(Stouffer et al., 1989; Cubasch et al., 1992; Meehl et al,, 1993). If CO, and anthropogenic
sulfate aerosols have both affected climate, it would seem more appropriate to compare ob-
served data with the signal pattern from the combined sulfate/C0O; experiment than with
the CO3-only response pattern.

The TP integrations represent a first attempt to simulate the three-dimensional elimate
response to anthropogenic sulfate aerosal forcing with an AGCM coupled to a model of
tropospheric sulfate chemistry. The only comparable studies at present are those by Roeckner
et al. (1094) and Mitchell et al. (1994). These investigations also considered the temperature
response to a combination of GHG and anthropogenic sulfate aerasol forcing, but the annual
mean sulfate aerosol burden was prescribed and the direct radiative effect of the aerosol was
parameterized by changing the surface albedo. Both studies did not allow changes in climate
to influence the aerosol distribution, whereas in the TP study two-way interaction is possible
between climate and aerosols.

To date, no attempt has been made to search observed records of near-surface temper-
ature changes for a GCM-predicted, two-dimensional temperature-change pattern due to
sulfate aerosols or some combination of sulfate aerosol and CO, forcing. Investigations of
the possible impact of sulfate aercsols on observed temperature data have thus far been
restricted to analysis of observed changes in areas where sulfate aerosol emissions andfor
forcing is likely to have been large (Wigley et al., 1992; Engardt and Rodhe, 1993; Hunter et
al., 1993; Karl et al., 1994) or to a visual comparison of observed temperature change patterns
and patterns of vertically-integrated aerosol concentration predicted by a chemical-transport
model {Engardt and Rodhe, 1993).

In the present study we extend the pattern correlation analysis of Santer et al. (1993)



and determine whether the near-surface temperature signals in the TP sulfate-only, CO,-
only and combined forcing experiments are mcreasingly evident in the observed data, The
temperature signals used in aur investigation are taken exclusively from equilibrium response
experiments. Our strategy of searching the time-varying instrumental temperature records
for an equilibrium signal pattern, with no time information other than a seasonal dependence,
requires some explanation.

There are at least three reasons for our focus on time-independent signals. The first
reason is data availability: at present, no A/OGCM has been forced by time-dependent
changes in both anthropogenic sulfate aerosols and GHG concentrations. When such an
ntegration is performed, it will require a pre-industrial starting time? and a coupled mode!
which has had a spin-up period of sufficient length to attain a quasi-stationary state ®

Second, even if we assumed that a particular A/OGCM contained all the physics nec-
essary to accurately simulate the climate system’s response to GHG and/or sulfate aerosol
forcing, a single transient experiment performed with such a model and observed 503 emis-
sions and GHG concentration changes would he unlikely to provide a reliable estimate of
the true, underlying space-time signal in response to the combined anthropogenic forcing.
This is due to the fact that the A/OGCM generates its own complex internal variability as a
result of interactions between the atmosphere and ocean, unrelated to changes in greenhouse
gases, sulfate aerosals, or other external forcings. As shown by Cubasch et al, (1994}, an
ensemble of transient greenhouse warming integrations with identjcal time-evolving GHG
forcing but small differences in the injtial boundary conditions can yield rather different so
lutions for the time-evolving response patterns (at least on timescales of up to 40-50 years),
This result illustrates that different manifestations of the model’s natural variability noise
are superimposed on the true, underlying GHG signal, so that a reliable estimate of the
signal’s mitial evolution is likely to require averaging over a number of different realizations.
Initial condition uncertainty will be even more of an issue in obtaining a reliable estimate of
the true space-time signal in response to combined GHG /sulfate aerozol forcing, since the
signal-to-noise ratios are probably much lower than for the case of GHG foreing alone. *

*This is necessary in order to alleviate the so-called “cold start' error; see e, Fichefet and Tricot, 1992;

Hasselmann et al,, 1093,
*In order to avoid the convelution of initial equilibration phenomena with the the predicted anthopogenie

climate change signal: see Santer st al,, 1084a.
*This is due to the fact thas we are looking for a signal that results from partially-cancelling positive and



Third, there are large uncertainties in the past history of anthropogenic aeroso] emissions,
and even larger uncertainties in the magnitude and pattern of aerosol forcing changes. These
translate into further uncertainty in the space-time evolution of the climate-change signal.

It is for these reasons that we focus on equilibrium signal patterns. This strategy makes
the implicit assumption that the true time-varying signal pattern (if such could be obtained)
varies little in time and is highly similar to the equilibrium signal pattern. This assumption,
in turn, requires that historical differences in the patterns of 50; emissions (and in the
relative magnitudes of GHG and aerosol forcing) are small. At present, we have no choice
other than to search for an equilibrium GHG /sulfate asrosol response pattern in the observed
data, and it may in fact be difficult to define a reliable transjent GHG /sulfate aerosol signal.

The structure of this paper is as follows. Secticn 2 provides a brief description of the TP
numerical experiments. In Section 3 we discuss the geographical distributions of seasonally-
and annually-averaged changes in near-surface temperature in the three forcing experiments
and consider the statistical significance of changes in means using univariate (grid-point)
t-tests. We also employ spatial correlations to measure the pattern similarity of various
quantities in the response experiments. In Section 4, we first define centered and uncentersd
pattern similarity statistics, R(f) and (1), and briefly consider their relative merits in the
context of detection and attribution of cbserved climate change. Section 5 then employs
these statistics to search the observed record of near-surface temperature changes for the
seasonal and annual surface temperature signals from the three TP (1994) perturbation
experiments. The question of whether the trends in our pattern similarity measures are
significant is addressed in Section 6, In the absence of reliable information on the magnitude
and spatial characteristics of decadal- to century-timescale natural variability in the real
warld, we employ data from two long control integrations performed with fully-coupled
A/OGCMs to estimate the sampling distributions of ‘unforced’ trends in FR(t) and [t}
on timescales of 10- to 50 years and to assess the significance of observed trends in these
statistics. A short summary and conclusions are given in Section 7.

negative foreings.



2 Experiments

The experiments discussed here have been described in detail by TP. The integrations were
performed with the GRANTOUR trapospheric chemistry model developed at Lawrence Liv-
ermore National Laboratory (Walton et al., 1988), coupled to the Livermore version of the
Mational Center for Atmospheric Research Community Climate Model (NCAR CCML; Tay-
lor and Ghan, 1992). The CCM1 atmospheric general circulation model in turn was coupled
to a S0-meter mixed-layer ocean model with prescribed meridional heat flux. CCM1 has 12
layers in the vertical, and was run with a horizontal resolution of ca. 4.3° latitude x T7.5°
longitude. The GRANTOUR tropospheric chemistry model is a Lagrangian trace species
model, which simulates the transport, transformation and removal of various sulfur species
(Penner et al., 1994a). Only the direct effects of sulfate aerosols are considered. For further
details of the GRANTOUR/CCMI experimental configuration, refer to TP.

Four integrations were performed: a control run (CTL) with nominal pre-industrial CO;
levels (270 ppmyv; the standard IPCC value is 278 ppmv, Schimel et al., 1994) and no anthro-
pogenic sulfur emissions, a sulfate-only experiment (S) with near-present-day anthropogemc
sulfur emissions (prescribed according to Spiro et al., 1992, and Benkowitz, 1982) and near-
pre-industrial CO; concentrations, a C(ly-only experiment (C) with no sulfur emissions and
nominal present-day CO; levels (345 ppmv; c.f. the 1900 value of 354 ppmv given by Schimel
et al., 1994), and a combined forcing experiment with near-present-day sulfur emissions and
C0,. For the purposes of this study, each of the original TP integrations was extended by at
least 10 years, and temperature-change signals were computed using samples from the last
20 years of each simulation (following at least a 10-vear spin-up period).

3 Model Results

We compare the surface temperature responses in the three perturbation experiments in
various ways — using maps of the grographical distribution of temperature change, pattern
correlations, and univariate t-tests (e.g., Wigley and Santer, 199(: Santer and Wigley, 1990).
For comparing patterns, we computed centered (spatial mean removed) spatial correlations,
here denoted by R (see Santer et al., 1993). We also computed an area-weighted form of A.



Results for the unweighted and area-weighted forms of & are similar, and in the following
the discussion is restricted to the area-weighted form only. Univariate t-tests were used
to determine whether (and where) the grid-point means were significantly different in the
control and response experiments.

3.1 Sulfate-Only Experiment

Figures 1, 2, and 3 show the geographical distributions of seasonally- and annually-averaged
changes in near-surface temperature in the three TP perturbation experiments. In the
5 experiment, temperature changes in DJF, JJA and the annual average are negative at
virtually all grid-points. The maximum cooling occurs over the Norwegian Sea (ca. =7C)
m winter and to the east of the Weddell Sea (—6°C) in summer.

In both DJF and JJA, the location of the maximum response differs from the location of
the maximmum forcing; the spatial pattern correlations between radiative forcing and response
are only 0.02 in DJF and 0.36 in JJA (c.f. Figures 1, 2, and Figure 4; also Table 1 and TP).
The higher correlation in JJA reflects the fact that there is some spatial congruence between
forcing and response where both are large over Western Europe. In contrast, the DJF
response maximum in the Norwegian Sea is not congruent with a maximum in the forcing.
A similar displacerment between forcing and response maxima is suggested by the results of
Roeckner et al. (1994),

Although there are substantial uncertainties associated with the forcing and response
patterns simulated in both the Roeckner et al. and TP studies, the results illustrate the
importance of the atmospheric general circulation in ‘modulating’ the response to regionally-
localized forcing. Detection studies that use as their signal the sulfate aerosol distribution
or aerasol forcing predicted by a sulfur chemistry model (e.g., Wigley et al., 1992; Engardt
and Rodhe, 1993), or pattern of observed changes in sulfur emissions (Karl et al., 1994 ) may
therefore yield misleading results.

The temperature changes noted above are large compared with changes observed this
century, mainly because they are equilibrium changes. While these magnitudes may be
debatable, the actual values are not relevant in the present study, which focusses on the
patterns of change — i.e., the spatial distribution of relative changes.



Note that the maximum Northern Hemisphere cooling occurs in DJF, even though the
maximum forcing is in JJA and the DJF forcing is relatively small (e.f. Figures la, 2a,
and Figure 4). In JJA, the maximum response is in the Southern Hemisphere, even though
the forcing is largely in the Northern Hemisphere, There are several explanations for these
results. The fact that the Southern Hemisphere demonstrates a substantial response to
a forcing primarily confined to the Northern Hemisphere (cf. Figures 2a, 3a and 4) is
an indication of the ability of the atmosphere to exchange heat and momentum between
hemispheres in an efficient way. The generally stronger response in the winter hemisphere is
in part due to the fact that the effect of changes in sea-ice extent on surface temperature is
largest at this time of year (when surface inversions are possible).

A univariate t-test® reveals that the changes in mean state are highly significant in the
sulfate-only experiment (Table 2 and Figure 5). 86.5% - 98.8% of the total number of grid-
point tests performed showed significant differences in temperatures between the experiment
and control (at the & = 0.01 significance level). It is clear from these results (even without
resorting to multivariate significance tests; see Preizendarfer and Barnett, 1983; Wigley and
Santer, 1990; Santer and Wigley, 1990) that the overall (global) differences in means betwesn
the sulfate-only and control experiments are highlv significant.

3.2 CO3-Only Experiment

The spatial patterns of seasonally- and annually-averaged near-surface temperature changes
in the COy-only experiment are very similar to those obtained in equilibrium CO;-doubling
integrations with comparable AGCM /mixed-layer ocean experimental cnnﬁ,gura.timls (Man-
abe and Stouffer, 1980; Hansen et al., 1984; Schlesinger and Mitchell, 1987; Washington and
Meehl, 1989). The warming is spatially coherent (Figures 1b, 2b, 3b). The DJF and JJA
temperature change patterns show the standard picture of equator-to-pole amplification in
the winter hemisphere, a feature associated with poleward retreat of the sea-ice margin. This
pattern similarity occurs despite the comparatively low level of the forcing - the COz-only
experiment was performed with an atmospheric CO; concentration change of only T3 ppmv
(from 270 to 345 ppmv), in contrast to the ca. 300-330 ppmv changes (from ca. 300-330
ppmv to 600-660 ppmv) commeonly used in step-function CO, doubling experiments.

*All t-tests were performed using H-year samples from the control run and the perturbation experiments.




The overall maximum temperature increases tend to occur in locations where maximum
cooling occurred in the sulfate-only experiment, i.e., in the Norwegian Sea in DJF (ca. T°C)
and in the Ross and Weddell Seas in JJA (ca. 7-8°C). The annual average changes do not
show the same degree of hemispheric symmetry commonly found in equilibrium doubling
experiments with mixed-layer models (Schlesinger and Mitchell, 1987). This is due to the
smaller percentage reduction in sea-ice coverage in the Northern Hemisphere — the reduction
in ice-coverage in the Southern Hemisphere is nearly three times larger (see Table | of TP).
The seasonal and annual warming patterns have a land-sea contrast component, with larger
changes over land areas, as in recent transient experiments with fully-coupled A/OGCMs
(Cubasch et al., 1992; Santer et al., 1994b). Unlike these recent experiments, the land
warming maxima are not concentrated in desert areas with low evaporative cooling.

As in the sulfate-only case, the response paitern differs markedly from the pattern of the
forcing, and is negatively correlated with the latter (= —0.51 in DJF, R = —0.52 in JJA;
see Table 1). This inverse relationship iz due to the different zonal structures of forcing and
response fields — while the response is a maximum at high latitudes in both hemispheres, the
forcing peaks at low latitudes (c.f. Figures 1b, 2b and 4c, 4d).

The univariate t-test results indicate that the surface temperature signal in the COg-only
experiment is highly significant in all seasons and in the annual average (Table 2). Changes in
the COz-only experiment show consistently higher pereentages of grid-points with significant
differences in means than in the sulfate-only experiment, primarily due to the larger global
mean temperature change in the former experiment (+1.45°C versus —1.19°C, respectively).®
Note that significant changes in annually-averaged temperature cover larger percentage areas
than seasonal temperature changes, since the averaging reduces noise.

fNote that in TP, the climate sensitivity of the model for & doubling of COs was given as §.4°C, a result
which was based on 10-vear samples only. The results which we present here are now based on the final
M) years of much longer integrations (30-50 vears). The climate cooled by several tenths of a degree in the
C0y-only integration (before stabilizing towards the end of the integration), yielding a much lower estimate
of the climate sensitivity: 4.8%C.



3.3 Combined Sulfate/CO; Experiment

Unlike the sulfate-only and COy-only integrations, the patterns of temperature change in the
combined sulfate/CQy experiment are characterized by spatially-coherent regions of both
warming and cooling (Figures l¢, 2 and 3c). Temperature decreases are restricted largely
to the Northern Hemisphere, which is where most of the radiative forcing associated with
sulfate aerosols oceurs (Figure 4). The largest decreases are over the Norwegian Sea in DJF
(ca. —2°C) and over south-eastern Europe in JJA {ca. —2°C). Warming maxima are in
the Ross and Weddell Seas in JJA (ca. 4-8°C), and over Greenland, Labrador, the Sea of
Okhotsk, and a small area of Antarctica in DJF (ca. 2°C),

The warming and cooling maxima in all seasons are considerably reduced relative to the
respective maxima in the sulfate-only and COy-only experiments, In DJF, for example, the
large temperature changes in the Norwegian Sea in the § and C experiments (Figures la,
Ib) are considerably reduced in the 5C integration (Figure 1c). While the DJF response
patterns in the SC and S integrations show some spatial correspondence (A = 0.46), the 5C
and C response patterns are uncorrelated (R = 0.01; see Table 3). In JJA, however, the SC
response pattern is very similar to the COz-only temperature change pattern (£ = 0.79),
and is negatively correlated with the sulfate-only response pattern (f = —0.26). This is
due to the fact that the offsetting effects of sulfate in the regions of maximum temperature
response to CO; forcing are less in JJA than in DJF (cf. Figures 1a,b and 2a.b). The pattern
similarity between C and SC and § and 5C clearly depends on the relative magnitudes of
the CO; and aeresal forcing.

The univariate t-tests {Table 2) indicate that the fractions of the globe with significant
differences in means (SC versus CTL) are consistently lower than in either the § or C
experiments, This is attributable to compensating warming and cooling responses over large
areas of the Northern Hemisphere in both seasons and in the annual average, resulting in large
areas with relatively small changes in the mean state. Large, spatially-coherent regions with
differences in means significant at the 1% and 5% levels are generally restricted to Southern
Hemisphere oceans and low-latitude Northern Hemisphere ocean areas (Figure 5). In DJF,
the only land areas showing evidence of a significant response are over Greenland, southern
Europe, Antarctica, and areas of South America and Africa. In JJA, significant responses
are found over Alaska, south-eastern Europe, and areas of Australia and Antaretica.
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The limited statistical significance of the response over large areas of the Northern Hemi-
sphere is not an artefact of the length of the control and response experiments. For the
‘present-day’ sulfate and CO, forcing levels stipulated in the TP SC experiment, large areas
of the Northern Hemisphere with little or no change in the mean state are a fundamental

property of the simulated response pattern (at least for the model used here).

It is interesting to note that the response patterns for the SC integration are, in a purely
qualitative sense, more similar to observed patterns of seasonal temperature change (see
Jones et al., 1991; Folland et al., 1992; Parker et al., 1994) than the response patterns in the
individual S and C experiments. We will consider this issue further in Section 5.1, which

presents quantitative measures of observed versus simulated pattern similarity.

4 Pattern Similarity Statistics

In this section we introduce the pattern correlation statistics, R(t) and C(t), which we
subsequently use for comparing model and observed spatial patterns of temperature change.
It is assumed in the following that we are dealing with seasonally- or annually-averaged data.

The terminology is similar to that used by Santer et al. (1993).

4.1 Definition and Computation of Pattern Similarity Statistics

We first compute seasonal- and annual-mean temperature changes in the TP control run and
response experiments. In each of the three TP response experiments (S, C, and SC), the

temperature-change signal is defined as

AM(z) = Mexe(z) — MotL(2) (1)

where M denotes model data, with the subscripts EXP and CTL identifying output from
one of the TP response experiments and control integration, respectively. The index z
is a discrete variable running over space (grid-points), with 2 = 1,...,n. The overbars
in Mexp(z) and Mcti(z) indicate time averages, here computed using 20-year samples of
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experiment and control data. We stress that these signal patterns have no time-dependence
(other than a seasonal dependence), since the TP integrations are equilibrium response

experiments with no interannual changes in the forcing.

The observed data, D(z,t), consist of monthly-mean, land-based surface air temperatures
and sea-surface temperatures from the combined land-ocean data set described by Jones et
al. (1991), spanning the interval 1854-1993. The data are in the form of anomalies relative
to the mean over 1950-79. Observed data were processed in the following way. We first

define a temporally-smoothed reference state Dy(x) centered on the year % as

+q
Di(z) = Y. D(z,to+v)W(v) (2)

v=-—gq

where W (v) are the normalized symmetric weights for a p-term Gaussian filter centered at
to (with p = 2¢ + 1; we use p = 13 below). As an example, if o = 1954, the reference
climate is the filtered mean over the years 1948-1960 (we will also consider other values of %o
in Appendix A in order to examine the sensitivity of results to choice of reference period).

We then define anomalies relative to D;(z) by

AD(z,t) = Dy(z,t) - Di(2) (3)

The index t denotes the center year of an interval of length p over which the observed data
are filtered. Thus

Di(z,t) = ij D(z,t +v)W(v) (4)

v=—q

where ¢ = (p — 1)/2. We use ¢ = 1910,1911,...,1993, so that the filtered anomalies cover
the 84-year period 1910-1993, while the data used in the filtering extend from 1904-1999.
Filter weights are set to zero if data are missing. Since data are not available for 1994-1999,
we assigned a missing value code for all post-1993 data. We then stipulate that a filtered
mean can only be computed if a critical fraction of the sum of the Gaussian filter weights
(Werit) is exceeded at any grid-point over any p—year period. Here Wer;: = 0.6, which allows
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us to calculate filtered means for 1993.7

The rationale for filtering is to reduce high-frequency variability, e.g., on timescales as-
sociated with El Nifio behavior and volcanoes. For the purposes of greenhouse-gas detection
studies, this is an undesirable noise component. The recent study by Santer et al. {1993)
employed overlapping decadal averages as a means of reducing noise. This is equivalent
to the use of a square-wave filter. The convolution of observed anomalies and the decadal
average filter effectively smoothes out features on timescales of less than 10 yvears, In the
present study, we analyse the significance of signal trends on timescales as short as 10 VBATE,
and therefore selected the 13-term Gaussian filter, which preserves more of the variance on
timescales of 5-10 years.

The set of time-evolving monthly-mean anomaly fields, ALz, t), was then used to com-
pute seasomal and annual averages. As in Santer et al. (1993), we stipulated that the
grid-point coverage for Dy(x,1) must be a subset of the coverage for Dy(z) in order to avoid
large, spatially non-random increases in coverage from the beginning of the century to the
present (see Appendix A). For a given response experiment and a given season, we now
have a single pattern characterizing the model temperature signal, AM (z), and a series of
time-evolving patterns characterizing observed temperature changes, AD(z, t).

Two different types of measure have been used previously to compare the spatial fields
AM{z) and AD{z,1): centered statistics (with the spatial means removed ), such as fi{t),
and uncentered statistics, such as C(t). These are defined by

Rit) = | 3 (AD(a.t) - AD() (aM(z) - Hfj] /[n spit) s | (3)
where
hit)= 3 [aD(z,6) - KD(O)]* fin 1) (6
=1

"Data from 1987 through 1999 are used to calculate a filtered mean for 1983. Assuming that data are
valid for 1867 through 1993 (inclusive) and missing thereaftar, the fraction of weights associated with non-
missing data is roughly 62% and thus sxceeds W4, Note that the same value of Werir was usad to compute
a filtered mean value for T ().
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is the spatial variance (with s}; defined similarly), and the = in (5} and (6) indicates a
spatial average, and

C(t) = [Z aﬂ{:.:}.ﬁ.m:]] [ 3 .::.M{r]’]- (7)
=1 r=1

R(#) is simply a spatial anomaly correlation {similar to statistics used in measuring the
‘akill’ of numerical weather predictions; see, for example, Anderson and van den Dool, 1994)
with the statistic centered about the spatial means of the observed and simulated fields.
C(#) is the statistic originally defined and used by Barnett and Schlesinger (1987).

(1) has several desirable properties. First, it is equal to 1.0 when AD{x, t) = AM(z),
so that it is a measure of the strength of the model signal in the observed data. Second,
unlike f(t), it does not involve a time-varying observed term in the denominator. Thus a
trend in C(f) with increasing time can only be due to increasing similarity between the model
and observed mean-change fields in the numerator of (7). In contrast, a trend in R(t) with
time can be attributable to a change in either the observed mean state and/for the observed
spatial variance. Third, C(t), unlike R(¢), is not bounded by #1.0. One consequence 1is
that as R(f) approaches +£1.0, changes in the amplitude of the ohserved pattern will not be
reflected in linear trends in J(1).

The choice of which type of statistic to use is not clear cut. C(f) has the apparent advan-
tage that it includes information about the mean change field, AD(t), which is an important
part of the signal in most situations, while R(t) focusses on the pattern of change. We have
shown previously (Santer et al., 1993; see also Section 5.1.4) that C'(t} can be decomposed
into R(t) and AD(t) components. In situations where the maodel-predicted change in global-
mean temperature is large relative to the observed changes, the Rit) component of C[t) is
much smaller than the AD(t) component, so time series of C(t) look very similar to those of
AD(t) (see, e.g., Santer et al., 1993, Figure 7). In such cases, (7(t) cannot be used to address
the attribution issue: i.e., if different external forcing mechanisms give rise to similar rates
of global mean change, C(t) cannot be used to determine which of the forcings caused the
observed change. It is in this situation that R(t), which focusses on the spatial anomalies
about the mean state, may provide the information required to discriminate between forcing
mechanisms with different pattern signatures but similar rates of global mean change.
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In the following, our emphasis is on attribution, and hence we prefer to use R(t). We
also compute C'(t), since its decomposition provides us with ueeful information about the
relative magnitudes of global-mean change and pattern similarity components for different
model-predicted signals from the TP experiments.

5 Comparison of Model and Observed Temperature
Change Patterns

In this section, we use both C(f) and R(t) to compare model and observed temperature
change patterns. For each of the three TP experiments and for each season, & gingle pattern
characterizing the model signal is compared with 84 observed temperature change patterns
consisting of filtered data for the years 1910, 1911, ... 1993. The resulting C(t) and R{t)
time series illustrate whether this fixed pattern is increasingly evident in the observed data.
Pattern correlations are calculated after exeluding grid-points with missing observed data,
and with a reference period centered on t; = 1954. Sensitivity to the choice of reference
period is minimal, as shown in Appendix A.

5.1 Pattern Similarity Results
5.1.1 COs-only Experiment

Consider first the results for temperature signals from the TP experiment with present-
day CO; forcing and no anthropogenic sulfate aerosols (Figure 6). If CO; forcing were the
dominant influence on climate — i.e., if other external forcings and internal natural variability
were negligible on timescales appropriate to a slowly-evolving greenhouse warming signal —
the R(t) and C(t) time series should show strong multi-decadal positive trends.

C(t) does not show evidence of large, positive trends which are sustained for 40 to 50
vears or longer (Figure 6). This is in accord with results obtained by Santer et al. (1993) for
the surface temperature signals from CO, doubling experiments performed with five different
AGCMs. The largest and most sustained C(t) trends occur at the beginning of the record
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(between ca. 1910-1940), not at the time of most-rapidly increasing forcing (see Wigley and
Raper, 1892). These changes in C(1) parallel those in global mean temperature (Jones et al.,
1391; Jones and Briffa, 1992). Further similarities in the behavior of C(t) and global mean
temperature are the periods of relatively little change in either between ca. 1940 and 1970
and the increase in both after 1975, Note also that C'(t) time series in all seasons except
DNF show the effects of the Pinatubo eruption in June 1991 and the volcanic aerosol-induced
reduction in global mean temperature (Hansen et al., 1993; Jones, 1994).

These similarities in the behavior of glebal mean temperature and C(t) are not su rprising,
and are in agreement with the observed and theoretical results of Santer et al. (1993). As
will be shown later (Section a.1.4), C'(t) can be partitioned into two components: an A1)
term and a term related to AD(t), the time-varying observed spatial mean. For the seasonal
and annual temperature signals from the C experiment, the @l{t] term is at least several
times larger than the R{t) term.

fi(t) behaves quite differently from C(t). In all seasons, R(t) increases during the same
1910-40 period over which C(t) rises, but then decreases and shows high-frequency oscilla-
tions about some mean state, with no evidence of a large, positive linear trend component
over the last 40-50 years. These results are also similar to those presented in Santer et al,
(1993). The initial increase in R(t) is in accord with the results of Wigley and Jones (1981)
and Kelly et al. (1982), who found that the pattern of abserved warming in the 1930s showed
some evidence of the high-latitude amplification characteristic of the temperature response
in CO; doubling experiments.

3.1.2 Sulfate-Only Experiment

The C(t) time series for the sulfate-on] ¥ temperature signals are virtually the inverse of the
C'(t) time series for the TP COs-only experiment (¢.f. Figures 6 and 7). This is not SUrprising,
since we have replaced a spatially-coherent warming pattern by a spatially-coherent cooling
pattern in computing the spatial covariance between the fixed madel pattern and the time-
varying observed fields, and because (apart from the sign) C'(1) is expected to paralle] Eﬂ{ﬂ
in both cases.

For R(t), however, the time series are not simply the inverse of the results for the CO,-
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only signals. In JJA and SON, E(t) has a large positive linear trend over 1940-1970, a period
over which the COg-only C(t) and R(t) trends are small.

5.1.3 Combined Forcing Experiment

The R(t) time series for the comparison of observed temperature changes and signals from
the TF combined forcing experiment are rather different from the corresponding time series
for the COs-only experiment (c.f. Figures 6 and 8). This is most pronounced in JJA and
SON: R(t) now shows a large positive trend which is sustained aver the last 40-60 years of the
observed record. For JJA, SON and ANN, R(f) trends are negative over ca. 1910-1940. The
positive trends in JJA and SON are similar to those for the sulfate-only case {Figure 7). The
implication is that some of the time-increasing congruence between the combined forcing
signal pattern and observations is coming from areas where cooling occurs, at least over
1940-1970, possibly related to sulfate aerosol effects,

These results suggest that the inclusion of forcing by both CO; and anthropogenic sul-
fate aerosols enables one to obtain a better fit between observed variations in near-surface
temperature and a model-predicted temperature response pattern. This is particularly so
over the 1940-1975 period, when f(t) shows little trend for the COg-only signal (Figure 6).
In other words, the observed data must have some time-increasing congruence with the
time-independent JJA and SON signal patterns from the TP combined forcing experiment.

some insights into the regions that contribute most to the trends in R(t) are obtained
by comparing the linear trends in observed near-surface temperature (e.g., over 1946-86;
see Karl et al., 1994) with the TP signal patterns from the combined forcing experiment.
For JJA, such a comparison shows that the observed cooling over southern-eastern Europe,
the east coast of the U.S., and the Tibetan/Mongolian Plateau is congruent with the TP
temperature change pattern (c.f. Figure 2c with Figure 2f of Karl et al., 1994). This must
contribute towards the large 50-year trends in A(t) and C(1).

For C'(t), the changes for all three perturbation experiments correlate strongly with
AD(t) (the observed time-varying spatial mean), although the latter correlations are least
for the combined forcing case. R(t) results are only weakly correlated with AD(t) (see
Table 4). This points to a dominant influence of AD(1) in the behavior of C(t), as discussed
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further below.

5.1.4 Decomposition of C(t)

Before addressing the issue of the significance of the linear trends in our pattern correlation
statistics (Section 6), we discuss more fully the reasons for C(t) changes. Santer et al. (1993)
showed that C(t) could be decomposed into an R(t) term and a term related to AD(t), the
time-varying observed spatial mean, '

| C(t) ~ aR(t) + bAD(2) B
where
a=sp(t)su/(s3 + AM") (9)
and
b=AM/(s% + AM") (10)

- Figure 9 shows the actual values of C(t) for the TP COs-only experiment, and the values
approximated using equation (8). It is obvious that (8) is an excellent approximation. The
ratio b/a may therefore be used as a measure of the relative contributions of the observed
spatial-mean change component and the pattern similarity component to the C(t) statistic.

Table 5 indicates that for temperature signals from the experiments with individual CO,
and sulfate aerosol forcings, b/a is always substantially greater than 1.0, with the largest 3
value (11.98) for annually-averaged data in the CO,-only experiment. For the CO;-only and
sulfate-only 31gnals therefore, the pattern similarity component of C (t) is swamped by the
change in AD(t), so that C(t) approximately reduces to a record of AD(t) scaled by 1 JAM
(since the s}, term in equation (10) is relatively small - see Table 5). 1

The ratio b/a is generally much closer to unity for the combined forcing experiment. In "'
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this instance, therefore, C(t) apparently provides some useful information on model versus
observed pattern congruence. However, an unambiguous interpretation of trends in C{t) is
nol possible without decomposition of the statistic, as in equation {8). Even for temperature
signals from the 5C experiment, a long-term trend in C(t) can be obtained through AD(t)
alone - i.e., without a trend in R(t) (see, e.g., DJF results in Figure 8).

6 Significance of R(t) and C(t) trends

In the previous section we showed that for certain seasons, the R(t) and C{t) time series
for surface temperature signals from the TP experiment with combined CO; and sulfate
aerosol forcing show large, positive linear trends over the last 40-60 years. Such trends are
qualitatively consistent with the hypothesis that sulfate aerosol-induced cooling could have
obscured an enhanced greenhouse effect warming signal. But are these trends statistically
significant? This is a difficult question to answer. In order to make meaningful statements
about trend significance, we need information about the characteristics of ‘unforced’ R(t) and
C(t) trends due solely to the effects of internally-generated natural variability on decadal-
to century-timescales. We cannot obtain this information easily from the observed data in
view of the difficulties involved in partitioning signal and noise - i.e., separating the observed
variability of surface temperatures into a component associated with a time-evolving response
to anthropogenic influences and a component associated with natural variability.

In this study, we employ model-generated noise data. In the model world, we can examine
output from experiments with no external forcing in order to estimate the magnitude and
spatial properties of natural variability noise.

The 20-year TP control integration is clearly too shert for estimating natural variability
nose characteristics on timescales appropriate to a slowly-evolving anthropogenic signal.
Furthermore, it is not clear whether an AGCM coupled to a mixed-layer ocean {which was the
expenimental configuration used by TP) is capable of realistically simulating the amplitude
and spatial structure of internally-generated natural variability on multi-decadal timescales,
since such models cannot accurately represent the horizontal and vertical transport of heat,
salt and momentum in the global ccean. These processes are likely to strongly influence
decadal- to century-timescale variability in the real world.
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We therefore used surface temperature results from two recent multi-centennial control
integrations performed with fully-coupled atmosphere-ocean GCMs in order to establish the
sampling distributions of R(t) and C(t) trends in the absence of external forcing. Near-
surface temperature data were taken from a 600-vear control integration with the Hamburg
A/OGCM.® and a 1,000-year integration of the GFDL coupled model.® These experiments
are referred to below as HAMCTL and GFDLCTL, respectively.

A detailed comparison of the near-surface temperaturs variability in HAMCTL and
GFDLCTL is beyond the scope of this paper. However, since data from these integrations
are used in the significance testing analysis, we provide an overview of model variability
differences in Appendix B, both in global mean terms and in terms of the dominant patterns

of variability.

6.1 Determination of Trend Significance

In order to determine the significance of the Fi(t) and C(t) trends, we need first to establish
the sampling distributions of trends in these statistics in the absence of external forcing.
The method we use is similar to that employed by Santer et al. (1994a).

We treat HAMCTL and GFDLCTL in the same way that we treated the observed near-
surface temperature data, and first define anomalies relative to some reference state of the

control run

AN(z,t) = Ny(z.t) - Ni(z) (11)

where N denotes noise data from either HAMCTL or GFDLCTL and the reference state
Mi(z) is the time-average over the entire contrel run. As in equation (4), data in Ng(z,t)
were smoothed with a 13-term Gaussian filter, and the index ¢ denotes the center year of an
interval of length p (= 13). The HAMCTL and GFDLCTL anomalies were then interpolated
to the observed data grid, and model data points outside of the observed region for 1954

"The model configuration was the ECHAM-1 T21 resslution AGCM coupled to the Large-Scale

Geostrophic OGCM,
"Here the experimental configuration was the GFDL R15 AGCM coupled to the Bryan-Coax OGOM.
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(see Figure A2) were excluded from the analysis.!” We then substituted ﬁ.\f{:,i],ﬂ’, ete.
for the corresponding observed terms in equations (5-7), and computed pattern correlation
time series in the absence of external forcing. These are referred to subsequently as Ry(t]
and Cx(t), where the subscript N indicates that the statistics were derived using either
HAMCTL or GFDLCTL noise data, and not observed data.

For each pattern correlation statistic, therefore, there is one time senes for each season
and the annual average, for each of the three TP response experiments, and for each of
the two natural variability integrations. This gives a total of 30 Ry(t) time series and 30
Cx(t) time series. Time series utilizing the HAMCTL (GFDLCTL) data are of length 588
(988). As an example, we show the Ry(t) and Cw(t) time series for the TP combined forcing
experiment and the HAMCTL natural variability noise (Figure 10). Both sets of time series
have considerable variability on 10- to 20-year timescales. When compared with observed
changes in (1) over the last 40- to 50 years (= 0.3 — 0.4 in the case of the COy-only signal;
see Figure ) Cn(t) changes tend to be noticeably smaller (= 0.2). For R(t), however, it is
more difficult to evaluate whether observed changes are unusual by visual inspection alone.

We next select an array of trend lengths, L; = ¢ x 10 (i = 1,...,3), appropriate to
the length of signal trends we wish to evaluate (10-50 years). We then fit linear trends for
different L; to non-overlapping sections of the Ax(t) and Cn(t) time series. The HAMCTL
(GFDLCTL) sample sizes therefore range from 58 (98] for 10-year trends to 11 (189) for
50-vear trends. For each response experiment, this yields a distribution of slope parameters,
Bwli)i=1,...,5, for each statistic, season, and natural variability noise integration. These
distributions are the yardsticks that we will use to judge the significance of signal trends,
Asl1).

The signal trends are simply the least-squares linear trends for the final 10-50 years of
the B(t) and C{t) time series in Figures 6-8 — i.e., the trends over 1984-93, 1974-93, etc. The
R(t) time series for the SON signal from the TP combined forcing experiment illustrates
this (see Figure 11). While the signal trends over the final 10-20 years of this time series are

negative, trends over longer intervals are positive and become increasingly larger.

W]inlike the situation when dealing with cbserved data (see Appendix A}, there are no coverage changes
28 & function of time - once the observed data mask for 1954 has been used to exclude model data points
from the analysis, this mask does not change with time.
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To eompute the significance level {p-value) for a selecied experiment and trend length
L;, we compare 8s(i) with the sampling distribution of 8y (i), and determine k;, the number
of times Sy(i) = Bs(i)." The probability of obtaining the signal trend by chance based on
the natural variability manifested in HAMCTL or GFDLCTL is then simply

pi = kyfmy (12)

where m; is the sample size for Sx(i). Note that the number of independent linear trend
samples in HAMCTL and GFDLCTL is likely to be smaller than m; due to the long decorre-
lation time of near-surface temperature, both in models and in the observations (see Hegerl
et al., 1004).

For the case we are dealing with here - a relatively short natural variability time series
and relatively long trend lengths L, - the use of non-overlapping chunks provides a noisy
estimate of the sampling distribution of ‘unforced’ 10- to 50-year linear trends. A much
smoother picture is obtained if overlapping chunks are used (as in Wigley and Raper, 1890,
and Santer et al., 1994a), although this exacerbates the problem of non-independence of
samples. We computed p-values using both non-overlapping chunks and chunks that had
the maximum overlap (i.e., by all but one year). The p-values were generally similar in both
cases. More importantly, the decisions on the significance of f{f) and C(t) trends did not
depend on whether sampling distributions of w (1) were computed with non-overlapping or
overlapping chunks. In the following section, therefore, our discussion is restricted to results
obtained using sampling distributions with overlapping chunks.

6.2 Trend Significance Results

0y -Only Signal

The p-values for the near-surface temperature signal from the TP COy-only experiment
are given in Table 6 as a function of trend length, season, statistic, and natural variability
noise experiment. Based on noise levels from either of the natural vanability experiments,

U Nate that this is a one-tailed test, since we have directional information about the signal — the linear
trends in R{t) and C(t) should be positive.
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linear signal trends for C(t) are significant at the 5% level or better for all seasons and all
trend lengths > 20 years. Since we have shown that C(1) basically provides information on
observed changes in global-mean temperature for the the COz-only signal (Section 5.1.4), our
results imply that the most recent 20- to 50-year trends in observed global-mean temperature
are large relative to the variance of ‘unforeed’ linear trends in HAMCTL and GFDLCTL.

Numerous other studies have demonstrated that the observed long-term (greater than
72 100 years) changes in global-mean, annually-averaged temperature are significant. Such
studies have used either statistical models of natural variability {(Wigley et al., 1989; Karl
et al., 1991: Bloomfield and Nychka, 1992: Allen and Smith, 1994; but see also Woodward
and Gray, 1993), or have derived natural variability noise estimates from one-dimensional
upwelling-diffusion meodels (Wigley and Raper, 1990, 1991a.b) or fully-coupled A /OGCMs
{Stouffer et al., 1994). Our investigation differs from such previous work in its focus on
shorter (10- to 50-year) signal trends, seasonal decomposition of the signal, and the use of
noise information from both HAMCTL and GFDLCTL.

The only previous study that has considered recent shori-term trends in global-mean
annually-averaged temperature iz that by Allen et al. {1994 ), which investigated the signif-
icance of the linear trend in global-mean lower tropospheric temperature’® from 1979-1994.
Allen et al. used detrended instrumental sea-surface temperature (S5T) data to estimate
the ma.gniludg of natural t'a.ria.hilit}r on bLimescales a.]:lpru[.':ria.t.f to the !Itngt]: of their sigual,
and concluded that the 15-year trend in lower tropospheric temperature was not significant.

Hegerl et al. {1994) used an uncentered pattern similarity statistic to compare observed
and model-predicted patterns of temperature trends. As in the present investigation, Hegerl
et al. found that their (non-optimized) detection statistic was largely a measure of observed
global-mean annually-averaged temperature change for a COz-only signal. The most recent
20- and 30-year trends in the Hegerl et al. detection statistic were highly significant relative
to the variance of linear trends in the first 385 years of HAMCTL, which agrees with our
ﬂ.ﬂdlng: for 20- to Hl-year trends 1n I!:'l:!] H.Egl:rl et al. impm'.'ed upon ther ﬂﬂn*ﬁptiﬂﬁﬂﬁ'd
results by rotating their fingerprint pattern in a direction in which the GHG signal could be
well-represented and the natural variability noise was small.

In contrast, none of our A(t) results for the TP COs-only signal achieve significance at

2 8g sampled by the satellite-based microwave sounding unit (MSU),
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the 5% level (Table 6). There is little evidence, therefore, that the spatial pattern (minus the
global mean) of temperature-change in the TP integration with COy-only forcing is steadily
evalving in the observed data.

Combined CO,/Sulfate Aerosol Signal

The trends in C[t) from the SC experiment are significant in all seasons for trend lengths
from 20 to 50 years {Table 7). This result is similar to that obtained in the previous section
for the COq-only signal, and largely arises through the strong correlation between C(t) and
AD(t). However, in the case of the §0-year trend lengths for JJA and SON, it is clear that
trends in R(t) also contribute to the C'(t) results, since R{f) shows a trend for these two
seasons (see Figure 8) and the R({) component of C(#) iz relatively large in SC (see Table 5).

A far more important result is that the R(t) trends for the SC signal are significant
for trend lengths of 50 years in JJA and SON. This result does not depend on the model
used to define the natural variability noise - i.e., the An (i) sampling distributions - at least
not for the two control runs examined here. It indicates that, in these seasons, there 1s an
evolving expression of the 5C signal pattern in the observed data, independent of any trend
in global-mean temperature. The 50-year R{t) trend for the annually-averaged 5C signal
is marginally significant for the GFDLCTL noise (p = 0.04) but is not significant relative
to the HAMCTL noise (p = 0.08). In all seasons, and for both neoise integrations, p-values
for 50-vear R(f) trends are smaller than the p-values for 10- to 40-year trend lengths {see
Table 7).

Sulfate-Only Signal

For the linear trends in R(t) from the TP sulfate-only experiment, only one result achieves
significance at the 5% level or better: the most recent 50-year trend in SON (see Table 8).
Recall that the 50-year f(t) trend in SON also achieves significance for the signal from the
combined forcing experiment (Table 7). As noted previously, this suggests that some portion
of the multi-decadal H(t) trend in the latter case is due to increasing congruence between

areas of predicted and observed cooling.

The C(t) results for the 5§ experiment are generally the opposite of those for the C
experiment {c.f. Tables 6 and 8] - 1.e. C(t) trends are significantly negative for most trend




lengths and seasons.!3

7 Summary and Conclusions

Over the past decade, a substantial modelling effort has been directed towards predicting
the climate changes likely to result from past and future increases in CO; concentrations.
An important question is whether the predictions by such models are consistent with the
observed surface temperature record over the last century. Can we extract a pattern of
change from these observations that is consistent with model predictions for an enhanced
greenhouse effect?

The answer to this question depends on how the searched-for GHG signal is defined.
Studies that have defined a GHG signal in terms of a pattern that incorporates the global-
mean change have showed that this signal is identifiable with a high level of confidence in
the observed data (Hegerl et al., 1994). Such investigations have also shown that the global-
mean change is the dominant component of the signal, and that it is this component that
makes the largest contribution to the overall significance of the results. This complicates
the attribution of observed changes to the specific cause of GHG forcing, since different
combinations of external forcmgs and/or natural variability may yield similar global-mean

- changes.

Other investigations have attempted to address the attribution issue by defining a GHG
signal in terms of spatial anomalies about the global-mean change. The rationale here is

B
b
£
74

. that it is probably difficult to obtain a high level of correspondence between the small-scale
features of observed- and model-predicted changes by mechanisms other than those used
in the model forcing experiment. To date, studies that have searched for model-predicted
greenhouse warming patterns in observed data (after removal of global-mean changes) have
yielded negative or inconclusive results (Santer et al., 1993). One plausible explanation
for this result is that the observed record represents the integrated response to a number
of external forcing mechanisms (changes in greenhouse gases, solar output, anthropogenic

sulfate aerosols, volcanic aerosols, etc.), coupled with internally-generated natural variability.

13Differences i  in the C versus S significance results for C(t) are predominantly due to differences in AM
since C(t) ~ AD(t) JAM.



The failure of attempts to detect the small-scale spatial structure of a GHG signal may
therefore be due to the neglect of other forcings in defining the signal we have been seeking.

Model integrations recently carried out by Taylor and Penner (1994) represent a first
attempt to simulate explicitly the temperature response to a combination of CO; and sul-
fate aerosol forcing, and form the basis of the current study. The integrations were per-
{ormed with the LLNL version of the NCAR CCM!1 atmospheric General Circulation Model
(AGCM) coupled to a fixed-depth mixed-layer ocean. The AGCM was also coupled to a tro-
pospheric chemistry model (GRANTOUR) which simulated the transport, transformation
and removal of various sulfur species. Four integrations were performed: a control run with
no anthropogenic sulfate aerosols and (approximately) pre-industrial CO; concentrations
(CTL), a ‘sulfate-only’ experiment with near-present-day sulfur emissions (S), a *COz-only’
experiment with near-current atmospheric CO; concentrations (C), and a combined forcing
experiment with near-present-day sulfur emissions and COy levels (SC).

The seasonally- and annually-averaged patterns of near-surface temperature change were
very different in the three response experiments. While the integrations with individual forc-
ing showed either global-scale, spatially-coherent cooling (5] or warming (C), the experiment
with combined sulfate/C0O; forcing yielded more complex patterns of temperature change,
characterized by both coaling and warming, with most of the cooling restricted to the North-
ern Hemisphere (see Figures 1-3). Both the 5 and SC experiments showed relatively weak
correlations between the patterns of radiative forcing and near-surface temperature response
(Table 1), illustrating the importance of the atmospheric general circulation in modulating
the response to regionally-localized foreing. The latter result suggests that detection studies
that use the pattern of sulfate aercsol forcing as a proxy for the pattern of near-surface
temperature response may yield misleading results. l

To determine whether the signal patterns in the §, C and SC experiments were increas-
ingly evident in the observed temperature data, we used an observed data set comprising
monthly-mean, land-based surface air temperatures and sea-surface temperatures for the in-
terval 1854-1993 (Jones et al., 1991 ), Observed temperature fields were expressed as anoma-
lies relative to a 1948-60 reference period and filtered in order to reduce high-frequency noise.
Model signals were computed using 20 years of data, and were defined as anomalies rela-
tive to a 20-year sample of the CTL experiment. For each experiment and season, a single
pattern characterizing the model signal was compared with 84 observed temperature change
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patterns for the vears 1910, 1911, ... 1993.

Two different forms of pattern similarity statistic were computed: R(t). in which the
spatial means of the observed and simulated fields are subtracted, and C(t), which retains
these spatial means. The two statistics provide different information in the detection con-
text. R{f), which focusses on spatial anomalies about the global-mean state, can provide
the information required to discriminate between forcing mechanisms with different pat-
tern signatures but similar rates of global mean change. C({) contains both pattern and
area-average information. In many cases, the area-average changes dominate the pattern
similarity component of C(t), so that it reduces from a multivariate to a univariate statistic.
Since the primary goal of this study was attribution of observed climate changes to a specific
causes, we therefore focussed on the interpretation of Ri{t) results.

The time series of R(t) and C{(t) indicate whether the model equilibrium signal is be-
coming increasingly evident in the observed data. For the COs-only signal, none of the R{#)
time series show evidence of a positive trend sustained over at least 4-5 decades, In contrast,
the R{t) time series for the SC signal showed large, multi-decadal positive trends in JJA and
SON. This indicates that in these seasons there is an evolving expression of the SC signal
pattern in the observed data, independent of any trend in global-mean temperature. 50-vear
trends are smaller than in the case of the COz-only signal. For the sulfate-only experiment,
Kt} has a large increase over 1940-70 in JJA, SON, and ANN, suggesting that at least some
portion of the long-term trends in R(t) in JJA and SON for the SC signal is attributable to
areas where cooling occurs.

In virtually all cases (the exceptions are the JJA and SON signals from the SC experi-
ment }, the behavior of Ct) closely parallels changes in observed global-mean temperature,
C'{t) results are in accord with the findings of Santer et al. (1993).

We tested the sensitivity of these results to different choices of #;, the central year of
the reference period used for defining observed near-surface temperature changes. While the
absolute values of C'(t) and R(f) depend on the choice of #,, the changes in both statistics
as a function of time are to first order independent of 1.

In the absence of reliable information on the magnitude and spatial characteristics of
long timescale natural variability in the real world, we used data from multi-century control
integrations performed with the Hamburg and GFDL fully-coupled A /OGCMs (HAMCTL;
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Cubasch et al., 1992; Hegerl et al., 1994; ‘GFDLCTL"; Delworth et al., 1993; Stouffer et al.,
1994) to assess the significance of the most recent R(t) and C(t) trends (fs) for the signals
from the §, C, and SC experiments. HAMCTL and GFDLCTL provide internally-consistent
(but model-specific) estimates of the magnitude and patterns of surface temperature variabil-
ity on long timescales. In the first stage of the significance analysis, we correlated 588 (988)
vears of filtered near-surface temperature anomaly patterns from HAMCTL (GFDLCTL)
with the signals from the three TP perturbation experiments. By fitting linear trends to
discrete sections of the resulting Ry(t) and Crnlt) time series, we next obtained sampling
distributions of Ay (the pattern correlation statistic trends in the absence of external forc-
ing). The significance of the 85 signal trends was then determined by comparison with the
appropriate Gy sampling distribution.

For the temperature-change signal from the TP combined foreing experiment, our results
dicated that the most recent 50-year R(t) trends are significant in JJA and SON. This result
did not depend on whether HAMCTL or GFDLCTL was used to estimate fy. For the signal
from the TP sulfate-only experiment, the 50-year R(t) trend in SON is the only result which
achieves significance at the 5% level or better. None of the R(t) trends for the COz-only
signal was significant.

This analysis supports but does not prove that we have detected, beyond doubt, an an-
thropogenic climate change signal in observed records of near-surface air temperature change.
We stress that we are relying on model noise and model signals in order to assess trend signifi-
cance. Both have attendant uncertainties (Santer et al., 1994a). Here, the natural variability
gimulated in the HAMCTL and GFDLCTL integrations constituted the vardstick used for
judging whether a signal trend was unusual. Some of the long-term variability in both ex-
periments may be related to residual drift rather than bona fide internally-generated fluctua-
tions of the coupled system (see Figure BL: also Cubasch et al., 1994; Santer et al., 1994a).1
Since the critical multi-decadal to century-timescale natural variability n HAMCTL and
GFDLCTL has not been validated (and may he difficult to validate, given our poor knowl-
edge of the spatial characteristics of natural variability on decadal- to century-timescales),

one must be cautious not to overinterpret the significance levels obtained here.

14]f the drift behavior over the first 200 years of BAMOTL inflates values of fx, our significance estimales
my well be conservative, at least for Cft). It is more difficult to know how drift behavior affects significance
estimates for R(f).




Furthermore, although we have tried to look at the model-dependence of natural vari-
ability noise by considering results from both HAMCTL and GFDLCTL, we have little or no
information about the sensitivity of the variability to changes in resolution, physics, flux cor-
rection scheme, or parameterizations. A preliminary comparison (see Appendix B) suggests
that the low-frequency variability of surface temperature is very different in HAMCTL and
GFDLCTL, both in global mean terms and in terms of the dominant patterns of near-surface
temperature variability. These differences in variability do not affect the significance of the
50-year R(t) trends in JJA and SON for the temperature signal from the SC experiment.
Both integrations, however, employed large flux corrections to compensate for systematic er-
rors in their atmospheric and oceanic components (Gates et al., 1993). It is not inconceivable
that such flux adjustment procedures can have an impact on the simulated multi-decadal-

to century-timescale variability.

Similar uncertainties affect the signal patterns used here. As has been noted by Taylor
and Penner (1994), the predicted pattern of temperature change in the SC experiment is
clearly a function of the relative magnitudes of the positive forcing by greenhouse gases
and the negative forcing due to anthropogenic sulfate aerosols. While the present-day CO,
forcing is relatively well-known, the current sulfate aerosol forcing is uncertain by a factor of
at least two (Wigley and Raper, 1992; Penner et al., 1994b). Furthermore, relative to other
studies (Charlson et al., 1991; Kiehl and Briegleb, 1993), the aerosol forcing in TP is quite
large, and is at the upper end of the range used by Wigley and Raper (1992). Clearly, these
forcing uncertainties translate into considerable uncertainty regarding the spatial pattern of
the temperature response in the SC experiment, and in the relative contributions to this
response from CO, and aerosols. Further signal uncertainties include the lack of a dynamic
ocean, the neglect of the indirect effects of sulfate aerosols, the omission of the radiative
effects of trace gases other than CO, (which may have temperature-change signatures that
differ from that for CO, alone; see Wang et al., 1991), and failure to include the effects of
carbonaceous aerosols generated by biomass burning, fossil fuel combustion, and industrial
processes (Penner et al., 1992, 1994b).15 '

- We also find that substantial natural variability can occur even in the experimental con-
figuration used by TP: an AGCM coupled to a fixed-depth mixed-layer ocean with prescribed

meridional heat transport. This “noise” (i.e., statistical signal uncertainty) is superimposed

15The optical properties of sulfate aerosols are very different from those of carbonaceous aerosols.
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on the signals used here, and its amplitude is not negligible relative to the amplitude of the
temperature-change signal in the SC experiment. If the variability of near-surface tempera-
ture is similar to that generated in much longer integrations by comparable AGCM /mixed-
layer ocean configurations (see Hansen et al., 1988, 1994), an integration time of 20 years or
less may be insufficient to obtain a reliable estimate of the true, underlying SC signal.

Future work should use longer integrations to address the robustness of the signal patterns
employed here, and should consider whether the signal-to-noise ratios obtained in our current
work ean be enhanced by the application of optimal detection techniques (Hasselmann, 1979,
1993), which attempt to filter out those signal components that are contaminated by natural

variability noise.

The caveats regarding the signals and natural variability noise which form the basis of this
study are numerous, Nevertheless, we have provided first evidence that both the largest-scale
(global-mean) and smaller-scale (spatial anomalies about the global mean) components of a
combined CO, / anthropogenic sulfate aerosol signal are identifiable in the observed near-
surface air temperature data. If the coupled-model noise estimates used here are reabstic - an
assumption which thus far has not been rigorously tested on the crucial decadal- te century-
timescales = we can be confident that the anthropogenic signal which we have identified 1=
distinctly different from natural variability noise. The fact that we have been able to detect
the detailed spatial signature in response to combined CO; and sulfate aerosol forcing, but
not in response to CO, forcing alone, suggests that some of the regional-scale background
noise (against which we were trying to detect & COg-only signal) is in fact part of the signal
of a sulfate aerosol effect on climate.

While our confidence in the identification of an anthropogenic effect on climate is high,
we have not shown conclusively that the signal identified can be attributed to the umque
cause of anthropogenic sulfate aerosols and CO;. We have taken a first step in the direction
of attribution by showing that agreement between modelled and observed changes exists
at relatively small spatial scales. Enhancing our confidence in the attribution of observed
climate changes to anthropogenic causes will require the elimination of other forcing mech-
anisms (such as solar variability and volcanoes) as possible explanations for the observed
changes. This should provide strong motivation for future modelling studies.
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Appendix A: Sensitivity to Choice of Reference Period

It iz useful to consider how the choice of 1y - the central year of the p-year period used
for computing the reference state D;(z) — influences the R(t) and C{t) results for the near-
surface temperature signals from the three TP response experiments. Sensitivity of trends
in R(t) and C(t) to the choice of reference state would make interpretation of the results
more difficult.

In the ideal situation, in which there are no missing values in the observed data set, it
can be shown analvtically that the changes in C(t) as a function of time are independent
of the choice of 1. The same holds true for R{t) if the observed spatial variance, s3,(t), is
roughly constant with time (as it is for temperature data; see Santer et al., 1933).

However, the observed data do mot comply with this ideal scenario, and show large,
spatially non-random changes in coverage as a function of time. This is illustrated in Figures
Al and A2. Since the maximum spatial coverage of observed data is determined by the
coverage over the reference period,'® changes in coverage with time will mean that the data

¥This is because the subset of data in Da(z, 1) that is actually used must be equal to or a subsel of the
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employed in calculating C(t) and R{¢) will depend on the choice of &y, so results may be

sensitive to #y.

Furthermore, it may be difficult to determine whether a positive trend in C(f) or A{t)
reflects a true time-increasing pattern similarity between the model and observed fields or
the effect of coverage changes. In choosing 4y, it is therefore desirable to minimize coverage
changes with time, and vet still maintain adequate coverage.

The effect of different choices of {; and attendant differences in coverage is illustrated in
Figures A3 (R(t)) and A4 (C(t)), by considering the extreme cases t5 = 1906 and 5 = 1954,
Results are for the seasonally- and annually-averaged near-surface temperature signals in
the TP experiment with combined CO;/sulfate aerosol forcing. For both statistics, it is
clear that the changes in model-versus-observed spatial covariance as a function of time (i.e,,
ARt and 8C /3t are, to first order, independent of 1.

These results have several important implications. First, it is apparent that linear trends
in the pattern correlation time series are relatively insensitive to differences in observed data
coverage for the two choices of {5, Second, we note that the absolute values of both statistics
are somewhat arbitrary, and can be raised or lowered by selection of a different reference
state. This is not a problem here, since our interest is in frends rather than absolute values.

Since our focus is on trends over the last 10- to 50 vears of the pattern correlation time
series, we use Iy = 1054. This guarantees that we have relatively stable observed data
coverage over 1944-1993, and considerably higher coverage than for #5 = 1906 (see Figures
Al and A2). The choice of a later {; would improve coverage still further, but have the
undesirable effect of yielding large coverage changes in the 1950s (due to the introduction of

data from Antarctica).

coverage of the reference state ) (2] in order to calculate changes relative to Dh(z).



Appendix B: Comparison of Variability in HAMCTL
and GFDLCTL

Features of the variability of near-surface air temperature in the first 100-385 years of HAM-
CTL have been described by Cubasch et al. {1992, 1994), Santer et al., (1994a,b) and Hegerl
et al. (1994). HAMCTL exhibits substantial variability on decadal-to-century time scales
(see Figure Bla). However, part of this variability, particularly over the first 200 years of
the integration, may be attributable to climate drift rather than bona fide variability of the

coupled ocean-atmosphere system,

The variability in GFDLCTL (Figure B1b) has been analysed by Delworth et al. {1993)
for the thermohaline circulation and by Stouffer et al. (1994), Mehta and Delworth (1994},
and Manabe and Stouffer (1995) for near-surface air temperature and S5T. These inves-
tigations have attempted to validate the interannual- to interdecadal timescale variability
simulated by the GFDL A/OGCM. The study by Stouffer et al. (1594) showed qualita-
tive agreement between observed and model-simulated patterns of interannual near-surface
temperature variability,!” and also indicated that model and observed relationships between
global-mean and regional temperature changes show a broadly similar structure. Mehta and
Delworth {1994) found considerable similarity between simulated and observed patterns char-
acterizing decadal-timescale variability of SST patterns in the tropical Atlantic. Such studies
help to build confidence in the reliability of the model variability on interannual to decadal

timescales. Validation of model variability on longer timescales is more problematical.

The behavior of global-mean, annually-averaged near-surface temperature is non-stationary
in both HAMCTL and GFDLCTL, despite the application of flux correction schemes. The
linear trend in GFDLCTL (0.023°C/century) is relatively monotonic, while the much larger
trend in HAMOCTL (0.102°C/century), is primarily due to a large negative excursion of
temperature over the first two hundred years of the integration. The standard deviations
of temperature for the detrended data differ by only 0.02°C (0.10°C for GFDLCTL versus
0.12°C for HAMCTL). For the observations over the period 1861-1993, the corresponding
figure is 0.21°C if no overall trend is removed. If an EBM is used to remove a combined
(GHG/sulfate aerosol effect from the observed data in an optimal way (cf. Wigley and

17With the exception of the tropical Pacific, where both GFDLCTL and HAMCTL underesiimats the
variability associated with ENSO phenomenn
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Raper, 1991b), the standard deviation of the residuals is 0.10°C, a result that is robust to

uncertainties in the assumed forcing history.

Power spectra of the detrended global-mean, annually-averaged near-surface temperature
changes for HAMCTL and GFDLCTL indicate that GFDLCTL has more power than HAM-
CTL on timescales of roughly 2-60 years, and less power than HAMCTL for periods greater
than = 60 years (see Figure B2).!® Part of the explanation for hae difference in power at the
low-frequency end of the coupled model spectra is the large negative temperature excursion
over the first 200 years of HAMCTL.® The areas defined by the upper and lower 95% confi-
dence limits for each of the coupled model spectra overlap at all frequencies, with minimum

overlap at the high- and low-frequency ends of the spectra.

Figure B2 also shows the spectrum from a 5,000-year integration of an upwelling-diffusive
energy-balance model (EBM; Wigley and Raper, 1990; 1992) with random forcing and a
climate sensitivity, AT;c0,, of 3.0°C for a doubling of atmospheric CO;. As noted by
Hasselmann (1976) and Wigley and Raper (1990), the low frequency spectrum depends on
ATz200,- The GFDL AGCM (coupled with a mixed-layer ocean) has a sensitivity of 3.5°C
(Stouffer, personal communication), while the corresponding figure is 2.6°C for the ECHAM
AGCM (see Table Bl in Gates et al., 1992). The EBM value was chosen to fall roughly
between the Hamburg and GFDL sensitivities.®® Note that in the lower frequency range,
HAMCTL has higher power than GFDLCTL despite having a lower value of ATyc0, — a
result opposite to that expected on theoretical grounds, as the EBM result on the left-hand
side of Figure B2 indicates. This is at least partially due to the above-mentioned climate
drift in the first 200 years of HAMCTL.

In contrast to the HAMCTL and EBM results, the spectrum for GFDLCTL flattens out
at periods greater than 100 years. The ubiquity of substantial power at century timescales in
paleoclimate spectra (see, e.g., Crowley and North, 1991; Stocker and Mysak, 1992) suggests
that either the paleodata have some low-frequency forcing that the model is lacking (e.g.,

solar variability, volcanoes) or that the model is underestimating the magnitude of century-

18These results are relatively insensitive to the choice of window width for smoothing.
19Removal of the overall linear trend reduces, but does not remove the effect of this initial drift on the

estimated spectrum.
29At high frequencies, the EBM was tuned to agree with the observed data after factoring out the effect

of ENSO (which accounts for about 30% of the variance at timescales less than 10 years).
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timescale variability associated with internal oscillations of the coupled atmosphere-ocean
i}".ﬁtﬂm.“ MNote that the EBM also shows a ﬂal‘.tening of the spectrum, but at f[equenciﬁ
substantially lower than in the GFDL model simulation {and beyond the lowest frequency
shown in Figure B2).

Sinece we have shown that C(t) closely parallels the ratio between model and observed
global-rnean temperature changes, and since the standard error for a linear trend of length L;
15 related to the spectral power at frequency 1/L;, one might expect the significanee of C(t)
values in Tables 6-8 to differ noticeably depending on whether HAMCTL or GFDLCTL was
used to estimate the noise. This is difficult to determine on the basis of p-values, since these
are generally highly significant for observed C(t) trends (Tables 6-5). We therefore computed
signal-to-noise ratios for C'(t) trends of different length. As in Santer et al. {1994a), we define
the signal-to-noise ratio SN; for trend length @ x 10 as

SN; = Bs(i)/en(i) (13)

where F:(1) is the observed trend in C(t) and £x(1) is the standard error of the sampling dis-
tribution of Sx(1), computed using either the GFDLCTL or HAMCTL data {see Section 6.1
for full details). The standard error is simply

iy 1/
en(i) = |(mi — 1)1 3 Buliy )? (14)
=1

where my is the sample size (the number of linear trends of length 1 x 10 in the Cy(t) natural

varibility time series).

Figure B3 shows SN, for 10- to 50-year linear trends in C'(t). Results are for annually-
averaged signal and noise data. For temperature-change signals from the sulfate-only and
COy-only experiments, the higher GFDL variance on 10- to 50-year timescales (Figure B2)

M Errors in the paleodsta provide a further possible explanation for this discrepancy. No proxy-bassd
reconstruction can perfectly retrieve the original climatic information, and statistical manipulation of the
palendats may alter their low-frequency characteristics (although this i= more likely to have decreased low-
frequency power than to have amplhfied it). An additional problem is that palecspectra are for individual
sites, not for global-mean temperature,



yields consistently lower signal—to-noise ratios than for ECHAM. For trends > 20 years, SN;
is much larger than the 5% significance threshold (for an assumed Gaussian distribution), s0
that GFDL versus ECHAM variance differences do not influence decisions on the significance
of observed C(t) trends. As discussed previously, C(t) provides a mix of pattern- and global-
mean change information in the case of the SC experiment. In this instance, therefore,
differences in SN; cannot be interpreted solely in terms of the different behavior of GFDL
and ECHAM global-mean temperature spectra in Figure B2.

Signa.l-to—noise ratios for 10- to 50-year linear trends in R(t) are surprisingly similar, at
least for JJA (Figure B4).2? This suggests that the patterns of pear-surface temperature vari-
ability on 10- to 50-year timescales must show some degree of correspondence in the GFDL
and ECHAM control runs. To compare the dominant patterns of variability, we computed
Empirical Orthogonal Functions (EOFs) of the HAMCTL and GFDLCTL annually-averaged
near-surface temperature data.z®> Model anomaly data were filtered as described in Section 4,
and grid-points outside the observed data mask for 1954 were excluded (see Figure A?2). This

procedure allows us to compare model variability modes over the same data window used

for computing observed R(t) trends.

The partitioning of total space-time variance is similar in both int.egra.t’.ions.24 EOFs
1 and 2 of GFDLCTL explain 13.2% and 8.9% of the variance (c.f. 11.0% and 9.9% for
HAMCTL). The total number of EOFs required to explain 2 95% of the variance is 69 for
GFDLCTL and 63 for HAMCTL. The EOF patterns show some large-scale spatial similar-
ity: both coupled models have large loadings of the same sign over high-latitude land areas
of North America and Eurasia. There are also pronounced differences. EOF 1 of GFDCTL
has the same sign at virtually all grid-points, while such globa.l—scale coherence is absent in
the HAMCTL EOFs. The marked dipole structure over North America in the first pair ol
HAMCTL EOF's has no analogue in the dominant GFDL modes. Further work is requirec
to identify ‘common’ patterns of variability in the two integrations (e.g., Common Principa

Components; Sengupta and Boyle, 1993) and their characteristic timescales, and to deter

"~ 22Note that the p-values for R(t) trends (Tables 6-8) are also similar for the GFDL and ECHAM noi

estimates.
23The first 400 years of GFDLCTL and the last 400 years of HAMCTL were used for computing EOFs
24 very different result is obtained if the full global fields are used for computing EOFs. In this ca

differences in the behavior of sea-ice in the two integrations yield a much flatter eigenvalue spectrum |

GFDL than for ECHAM.
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mine why the GFDL and ECHAM signal-to-noise ratios (and p-values) are similar for trends
in R(t).
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Figure 1: Wintertime (DJF) near-surface temperature changes (°C) in the three Taylor and Penner (1994)
[ESponse experiments, with forcing by anthropogenic sulfate serosols (1a), COl (1b), and 8 combination
of anthropogenic sulfate aerosols and COy (1), The perturbations gpproximately comespond Lo presant-
day sulfur emissions and atmospheric CO; levels. All changes were computed using H)-yvear averagey
#nd are expressed relative to the 20-vear DJF mean of a control run with a nominal pre-industrial C0,
concentration and no anthropogenic sulfate serosols,
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TP response experiments,
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Figure 6: Centered [R(t)] and uncentered [C(1)] pattern correlations between model and observed near-
surface temperature changes. Model changesin seasonally- and annually-averaged temperature are taken
from the the TP CO,-only experiment. For each season, one time-independent spatial pattern character-
izes the response to forcing by present-day atmospheric CO, concentrations. Observed changes were fil-
tered to remove high-frequency noise, and werce expressed as a time series of 84 anomaly patterns (from
1910-1993) relative to a filtered reference period extending from 1948-1960. All pattern correlations
were calculated after excluding grid-points with missing data.
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Figure 7: As for Figure 6, but for near-surface temperature changes from the TP sulfate-only experiment. ;
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time series were computed using (filtered) 'time-dcpcndcnt patterns of near-surface temperature change
from a 600-year control integration (“HAMCTL”) with a fully-coupled A/OGCM and time-independent

scasonal- and annual temperature-chan ge patterns from the TP experiment with combined CO, / sulfate
acrosol forcing.
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perature signal from the TP experiment with combined CO, / sulfate aerosol forcing. These are the signal

trends Bg(i). whose significance we wish to determine.
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Figure Al: Observed changes in coverage of gridded, annually-averaged near-surface lemperature data
a5 a function of time. The curve labelled * Available data”™ shows the change in coverage for the filtered
Jones et al. (1991) data if the data are used “as is” (i.e., as anomalies relative 1o 1950-79). The curves
labelled “g = 1906™ and “1, = 1954" show the coverage changes which are obtained by requiring that the
data coverage in D (x,¢) is a subset of the coverage in D (x) (sec Appendix). For the carlier reference
peniod, the coverage fluctuates around ca. 925 grid-points from ca. 1910-1988, with minima of ca. 700
and 750 grid-points in the war years (due 1o a reduction in oceanic data availability), The coverage is less
stable with time for £, = 1954, since hundreds of grid-points that had data in the reference period 1948-
60 did not have data in the first fow decades of the century. Note, however, that the average coverage
from ca. 1950-90 (roughly 1,550 grid-points) is much higher than for ¢, = 1906, In all three curves. recent
reductions in coverage reflect the degradation of the station observing network over land.
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Figure B1: Time series of global mean, annually-averaged near-surface temperature changes in the 600-
year HAMCTL (panel a) and 1,000-year GFDLCTL i integrations (panel b). Both control runs were per-
formed with fully-coupled A/OGCMs. Anomalies were defined relative to the mean state over the entire
integration. The unfiltered and low-pass filtered time series are shown, together with the least-squares
linear trends. Both time series are non-stationary: the linear trend per century is roughly four times larger
in HAMCTL than in GFDLCTL (0.102°C versus 0.023°C, respectively).
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with an upwelling-diffusive EBM (Wigley and Raper, 1991b). Specira were computed by taking the Fou-
ﬁﬂm[nmufm:numcmdaﬁmhmcumwimmnmmmnnumhunrlaguquﬂtulmllmlcngﬂl
of the time series (sce Jenkins and Watts, 1968), Epﬂn'nwmsmm:h:duﬂngn'mhy window, with
window widths of 60, 100, and 200 lags (for HAMCTL, GFDLCTL, and the EBM, respectively). The
number of frequencies computed is twice the window width (for HAMCTL and GFDLCTL) and four
times the window width for the EBM. The thin lines are the 95% confidence intervals for the coupled
mdthjmﬂmimm.mhumgwwwmmmmwﬂlmwmm?
Eﬂyem;ﬂ::m‘rnm:mmfmpﬁimsmmmﬁﬂm.mEBMwﬂ&mwimrmdﬂmfm;
mdn::.lmu:amailiﬁtyutlﬂ“ﬁﬁ:taﬂmﬁltngﬂiﬂﬂz.mhummnuppﬂhnmmﬂ[mcﬁm
gives the EBM spectral densities for climate sensitivities of 1.5°C and 4.5°C at a period of 400 years.
W:m:q:iﬁimnd:ispﬁmwu:mmpumdaﬂummnm of overall linear trends in the data.
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Figure B3: Signal-io-noise raios, SN, for observed trends in the uncentered patiern correl ation statistic
Cyt). The signals, (i), are the observed trends in Cft) for the last 10+ 10 50 vears. The noise, Eylf), is
the standard error of the sampling distribution of By (i) (see Section 6.1 and Appendix B for further
details). Standard errors were computed using data from both GFDLCTL and HAMCTL. Results are for
annually-averaged near-surface temperature data. For iemperature-change signals from the Taylor and
Peaner sulfaie-only and CO-only experiments, SN; is consistently lower for the GFDLCTL noise esti-
mites. The GFDL versus ECHAM differences in SN; can be interpreted in terms of the coupled-model
differences in the spectral density of global-mean, annually-averaged iemperature on timescales of 10-
to 50 years (see Figure B2). The thin solid line gives the 5% significance threshold for an assemed Gaus-
sian distribution of trends,
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RESPONSE
SEASON | FORCING S0, €O, 504+ CO,

S04 0.02 0.55 0.27

DJF co, 0.20 -0.51 -0.03
504+ CO; 030 0.15 0.37

3 S0, 0.36 0.27 0.38
JIA co, 0.08 -0.52 0.04
S04+ CO4 0.49 -0.52 0.46

50, 0.36 0.51 0.43

ANN Co, 0.09 .56 0.01
S04+ CO, 052 0.22 0.49

Table 1: Global spatial pattemn correlations between forcing and response fields. The forc-
ing ficlds are either the seasonally- or annually-averaged radiative forcing due to the mdi-
vidual and combined effects of sulfate aerosols and €05 (see Figure 4 for details). The
response fields are the time-averaged near-surface temperature changes in Figures 1-3. All
temperature changes were computed with 20-year samples relative to the average over
years 11-30 of the TP control integration with no anthropogenic sulfate aerosols and pre-
industrial atmospheric CO; levels. All correlations are for an area-weighted form of B
(sparial mean subtracted).
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SEASON EXPT o =001 o =005
DJIF 850, B6.5 93.0
Co 91.8 95.8
S04 +COy 56.1 65.3
MAM | 50y 894 53,7
Co, 896 95.4
S04 +C0; 55.2 65.7
JIA S04 583 93.4
o, 20.0 94.4
S04 +C0, 55.5 64.5
SON S0, §7.2 92.6
Coy 85.8 98.3
504 +C0, 541 65.0
ANN S0, 98.8 99.2
o, 10010 10410
50, +CO; 65.6 71.1

Table 2: Univariate t-test resulis for differences in mean state between the TP control run
with no anthropogenic sulfate aerosols and pre-industrial armospheric CO» and the three
TP perturbation experiments with individual and combined CO, and sulfate aerosol forc-
ing. All tests are two-tailed, and use 20-vear samples of seasonally- and annually-aver-
aged grid-point near-surface temperature data from the conwol and perturbation
experiments. Results indicate the number of local (grid-point) mrejections of the null
hypothesis of no difference in means (at stipulated significance levels of o = 0.01, 0.05),
expressed as a percentage of the total number of tests performed.
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SEASON EXPT co, 50, + CO,
SO, 064 073 0.46 048
DJF ,
co, 001" -0I8
50, 2053 031 | 026 0.49
MAM
co, 0.79 0.29
SO, 059 030 | 026 058
JIA
Cco, 0.79 0.32
0. 4 .
SON S0, 038 040 | 039 059
CO, 0.52 0.20
50, 055 061 0.10 0.60
ANN
Co, 0.63 0.01

Table 3: Global and regional “between-experiment” spatial pattern correlations. Results
are for seasonally- and annually-averaged near-surface temperature signals in the three TP
perturbation experiments, with forcing due to sulfate aerosols, CO,, and a combination of
sulfate aerosols and CO,. The perturbations approximately correspond to present-day
atmospheric CO; levels and anthropogenic sulfur emissions. The signals are the mean
changes (computed with 20-year samples) relative to the average over years 11-30 of the
TP control integration with no anthropogenic sulfate aerosols and pre-industrial atmo-
spheric CO, levels. The non-italicized numbers are the (centered) pattern correlations
obtained using the full spatial fields, and the italicized numbers are the correlations over
the area defined by the observed data mask for 7, = 1954 (see Figure A2, panel b).
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o | e | Sy |
SO, -0.29 -0.98
DIF CO, 0.15 0.99
S04+ CO; 038 093
SO4 -0.26 -0.99
MAM Co, 020 1.00
S04+ CO, -0.19 0.96
SOy, -0.11 -0.95
JIA CO, 039 0.99
S04+ CO; 0.06 0.63
SO, -0.05 -091
SON o, -0.05 0.98
S0, +CO, 0.01 0.82
SO, -0.06 -0.99
ANN co, 0.13 1.00
S04 + CO; -0.01 091

Table 4: Correlations between C(t) and R(?) time series and AD(?), the changes in
observed area-averaged near-surface temperature. Seasonal and annual C(z) and R(z) time
series are for the three TP perturbation experiments (see Figures 6-8). Values of AD(t)
were computed using the observed data mask for 7, = 1954 (see Figure A2, panel b). For
C(1), the changes for all three perturbation experiments comrelate strongly with AD (1),
which points to a dominant influence of AD(?) in the behavior of C(z).
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EXPT | SEASON bla T | z
DIF 1.6 0.66 0.98

MAM 4,05 0.37 0.23

50, JIA 5.00 021 0.27
SON 294 0.25 1.03

ANN 495 0.20 0.38

DIF 2.29 0.66 071

MAM 5.09 037 0.18

co, JIA 6.68 021 0.18
SON 482 0.25 0.33

ANN 7.31 0.20 0.19

DIF 1.24 0.66 0.26

MAM 1.77 037 0.24

CO3+50, JIA 1.25 0.21 0.41
SON 1.27 025 0.33

ANN 223 0.20 0.20

Table 5: Decomposition of Cfr). As shown by Santer et al. (1993}, Cf1) can ba decomposed
into a term measuring the strength of the pattem similarity and a term related 1o the
observed time-varying spatial mean (see Section 3.1.4). The coefficients a and b give the
relative strengths of these two terms. Values of the ratio &fa much larger than 1.0 indicate
that C¥¢) is dominated by observed changes in global-mean temperature, and provides lim-
ited pattern similarity information. This is the case for the experiments with forcing by
C0O; only and sulfate aerosols only. Also shown are the {time-averaged) spatdal variance
terms 5i and ;3 » which were computed using the observed data mask (see Figure A2,
panel b),
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TREND LENGTH (YEARS)
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Table 6: Significance levels (p-values) for seasonal and annual near-surface temperature signals
from the TP experiment with present-day CO; forcing. The signals are the linear wends, B, , for
the most recent 10, 20, ..., 50 years of the Ri#) and Cfr) time series shown in Figure 6 (ie., the
trends over years 1984-93, 1974-93, ..., 1944-93). To determine the significance of B, , we require
informarion on the behavior of the centered and uncentered pamem correlation statistics in the
absence of external forcing. This information was obtained by comrelating the seasonal and annoal
temperature-change signals from the TP COs-only experiment with temperature anomalies from
the 600-year HAMCTL and 1,000-year GFDLCTL integrations, each of which was performed
with a fully-coupled AJOGCM. The resulting B, (1) and C,,(r) time series for each coupled model
control run were then used 1o generate sampling distributions of “unforced”™ linear trends, B, , for
different seasons and trend lengths. The p-values were then computed by comparing B, with the
sampling distribution @, for the appropriate season, wrend length, statistic type, and coupled
model control nm (see Section 6.1). Non-italicized numbers are the p-values based on B, esti-
mates from HAMCTL; results for GFDLCTL are shown in italics. Signal trends significant at the
5% level or better are in shaded boxes. The p-values were computed using the maximum overlap
{i.e., by all but one year) in 10- to 50-year chunks of the R, (r) and Cy(¢) time series. The differ-
ent sample sizes for the two coupled models are given in the final row,
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TREND LENGTH (¥EARS)

10

SEASON
Ry DJF | posn 09716
Rity  MAM | pgos pas3

0.682

0729

0B84
0.738

0824 | 0952 04872 | 0740 pa53

0676 | 0521 0556 |08 o775

40

0.659

0.191

50

0.5358
0204

Table 7: As for Table 6, but for seasonal and annual near-surface e

experiment with combined sulfate aerosol / CO5 forcing.

mperature signals from the TP



TREND LENGTH (YEARS)
I0 20 30 40 50
SEASON

Riy DJIF o777 6720 (0509 0828 (0980 0950 (0719 0637 | 0547 0407
Ri)  MAM [ 0964 0924 | 0640 0610 | 0846 0825 | 0989 0964 | Od4BE 0584
Ry MA |os20 oS54 [0712 o070 | 0685 076 | 0536

Riy) SON | 0630 0625 | 0536 0506 | 0589 0552 | 0368

Rit) ANN |o946 0908 | 0784 0707 (0986 0972 (0796 0778 | 0B4 0046
Cft) DJIF |po9e3s 0965 | 1LOD0O 1000 | LODD  JO00 | LOOD OO0 | 100G 1000
Cfl MAM | 1000 1000 | 1000 2.000 | 1000 JOO0 | 1000 1.000 | 1000 OGO
) JA | o786 0658 | 1000 0S99 | 1000 1000 | 1000 0005 | 1000 0982
Cfr) SON [0S0l 0477 (0003 (0986 | 1000 G977 | 0930 0908 | 0586 (554
Cft} ANN |pogs 0930 | 1.0D0 1000 | 1000 J.000 | LOOOD 1000 | 1000 1000
wm 581 979 571 ga9 | 561 g59 | 551 a9 | 841 w39

Table 8: As for Table 6, but for seasonal and annual near-surface wemperamre signals from the TP
experiment with present-day sulfate acrosol forcing.
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